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Preface

The following lecture notes have been developed for the Ph.D. course entitled Optics for Mi-
croscopy and Spectroscopy held from March to April 2023 at the Italian Institute for Technology
(IIT) in Genoa. These notes are meant to be an aid for the students to study by summarizing
the most relevant concepts explained during the course. These notes have not been carefully
checked and may contain some errors. These notes cannot provide a complete and exhaustive
explanation of optics, imaging, and microscopy. The interested reader should also consult the
following books:

• Born, M., Wolf, E. Principles of Optics (7th ed.). Cambridge University Press.

• Goodman, J. Introduction to Fourier Optics (4th ed.). W. H. Freeman

• Boyd, R. Nonlinear Optics. (4th ed.). Academic Press

• Loudon, R. The Quantum Theory of Light (3rd ed.). Oxford University Press

Furthermore, much more in-depth information can be found in the vast scientific literature avail-
able in journals.
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1
Elements of Optics

1.1 Geometrical optics

1.1.1 Rays and ray transfer matrices

In geometrical optics, the light is described by rays. These latter are 2-dimensional vectors

r =

(︃
x
θ

)︃
(1.1)

whose first element is the distance from the optical axis, and the second is the angle between the
ray and the optical axis. The propagation of light through an optical element is calculated with
ray transfer matrices (see table 1.1)

M =

(︃
A B
C D

)︃
(1.2)

The new ray vector is calculated as the product between the matrix and the input vector

r1 = M · r0 =
(︃
Ax+Bθ
Cx+Dθ

)︃
(1.3)

The ray transfer matrix of a compound system is calculated as the product of the matrices of
each component

Mtot = Mn . . .M2 ·M1 (1.4)
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1 Elements of Optics 1.2 Fourier optics

Free space Thin lens Flat interface(︃
1 d
0 1

)︃ (︃
1 0
− 1

f
1

)︃ (︃
1 0
0 n1

n2

)︃
Table 1.1: Ray transfer matrices of three common optical elements.

1.1.2 Scanning lens

A lens can be used to convert the angular displacement of a ray into a lateral displacement.
Indeed, consider a ray originating from the optical axis with an angle θ. If its origin is distant f
from a lens with focal length f , we find the following result(︃

1 0
− 1

f
1

)︃(︃
1 f
0 1

)︃(︃
0
θ

)︃
=

(︃
fθ
0

)︃
(1.5)

The exiting ray is laterally displaced by a quantity fθ and propagates with no angle.

1.2 Fourier optics

Maxwell’s equations describe light propagation for all the components of the electric and magnetic
fields

∇ ·E = ρ/ε ∇×E = −∂B
∂t

∇ ·B = 0 ∇×B = µε
∂E

∂t
+ µJ

(1.6)

In a non-conducting medium (ρ = 0 and J = 0), they can combined to generate the wave
equations

∇2E =
n2

c2
∂2E

∂t2
∇2B =

n2

c2
∂2B

∂t2
(1.7)

where c = (µ0ε0)
− 1

2 is the speed of light in vacuum and n is the refractive index of the medium.
If the light is propagating through a homogeneous medium, the wave equations for each

coordinate of the vectors are identical. Therefore, it is sufficient to solve only one scalar equation.
In this case, the electromagnetic wave is effectively described by a scalar field that we identify
with the symbol U . In the real world, no medium is perfectly homogeneous. Thus, a scalar
description of light can be considered a good approximation only under certain conditions. The
main assumption behind that theory is that the coupling between the differential equations is
small, which is valid as long as the spatial inhomogeneities have a characteristic size much larger
than the optical wavelength λ. Notably, different polarization components of light can still be
described by the scalar theory as long as they can be treated independently.
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1.2 Fourier optics 1 Elements of Optics

1.2.1 Diffraction

If the scalar theory holds, we can consider a single wave equation for a scalar field U . The solution
of such a differential equation is given by the Huygens-Fresnel integral. This latter describes how
a field U0 propagates into the Uz after a distance z

Uz(x) =
z

iλ

∫︂
R2

U0(x0)
exp(ikϱ)

ϱ2
dx0 (1.8)

where the position vector is x = (x, y) – the location on a plane orthogonal to the optical axis
z – and ϱ is the distance between two planes, assumed to be much greater than λ, defined as

ϱ =
√︁
(x− x0)2 + (y − y0)2 + z2 = z

√︄
1 +

(︃
x− x0
z

)︃2

+

(︃
y − y0
z

)︃2

(1.9)

The diffraction integral can be simplified using the proper approximation. The choice for this
latter depends on the value of

F =
D2

zλ
(1.10)

called the Fresnel number. In this definition, D is the linear size of field at the starting plane.
If F ≳ 1 the diffraction takes place in the near-field region and the propagation is better

described by the Fresnel approximation. If F ≪ 1 the diffraction takes place in the far-field
region. In this case the Fresnel approximation still holds, but it can be further simplified with the
Fraunhofer approximation.

1.2.1.1 Fresnel diffraction

Under the paraxial approximation, namely the assumption that diffraction angles are small with
respect to the optical axis, we can expand ϱ in series

ϱ ∼ z

[︄
1 +

1

2

(︃
x− x0
z

)︃2

+
1

2

(︃
y − y0
z

)︃2
]︄

(1.11)

and replace it in equation 1.8. Keeping only the linear term for the denominator and up to the
quadratic term for the argument of the exponential, we obtain

Uz(x) =
eikz

iλz

∫︂
R2

U0(x0) exp

[︃
ik

2z
(x− x0)

2

]︃
dx0 (1.12)

This equation is known as the Fresnel diffraction integral, which can be seen as the convolution

Uz(x) = [U0(x0) ∗ Fz(x0)] (x) (1.13)
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1 Elements of Optics 1.2 Fourier optics

where Fz the Fresnel convolution kernel

Fz(x, y) =
eikz

iλz
exp

[︃
ik

2z

(︁
x2 + y2

)︁]︃
(1.14)

Interestingly, this kernel has a simple Fourier transform which greatly simplifies the analytical and
numerical calculations of the propagation of light in free space

F̂ z(νx, νy) = eikz exp
[︁
−iπλz

(︁
ν2x + ν2y

)︁]︁
(1.15)

where ν = (νx, νy) are the spatial frequencies.

1.2.1.2 Fraunhofer diffraction

At very large distances, the diffraction formula can be further simplified. Indeed, if we can neglect
the quadratic terms of the argument of the exponential of equation 1.12, we obtain

Uz(x) =
eikze

ik
2z

(x2+y2)

iλz

∫︂
R2

U0(x0) exp

(︃
i
2π

λz
x · x0

)︃
dx0 (1.16)

This result is known as the Fraunhofer diffraction integral. Aside from negligible multiplicative
factors, this integral is the Fourier transform of the field U0 evaluated at spatial frequencies
ν =

(︁
x
λz
, y
λz

)︁
Uz(x) ∝ F{U0(x0)}

(︂ x

λz

)︂
(1.17)

1.2.2 Fourier transforming property of the lenses

The phase transformation applied by a lens to a field is

tl(x) = exp

(︃
− ik

2f
x2

)︃
(1.18)

Notably, this transmission function has the expression of the Fresnel propagation kernel evaluated
at z = −f , except for multiplicative constants

tl(x) ∝ F−f (x) (1.19)

Now, we calculate the effect of a lens with focal length f and a free-space propagation of the
same length on a field U0 originating from a distance z behind the lens. The result U1 is calculated
as follows

U1 = [(U0 ∗ Fz) · F−f ] ∗ Ff (1.20)

The above equation can be rewritten in frequency space by exploiting the convolution property
of the Fourier transform

5



1.3 Vectorial Optics 1 Elements of Optics

Û1(ν
′) =

(︂[︂
Û0(ν) · F̂ z(ν)

]︂
∗ F̂−f (ν)

)︂
(ν ′) · F̂ f (ν

′) =

=

∫︂
R2

Û0(ν) exp
[︁
−iπλ(z − f)ν2

]︁
exp [−i2πλfν · ν ′] dν (1.21)

Transforming back into real space, we obtain

U1(x) =

∫︂
R2

Û0(ν) exp
[︁
−iπλ(z − f)ν2

]︁ ∫︂
R2

exp [−i2πλfν · ν ′] exp [i2πx · ν ′] dν ′⏞ ⏟⏟ ⏞
δ(x−νλf)

dν =

= Û0

(︃
x

λf

)︃
exp

[︃
ik

2f

(︃
1− z

f

)︃
x2

]︃
(1.22)

Interestingly, the field at the focal plane of the lens is the Fourier transform of the input field
evaluated at spatial frequencies ν = ( x

λf
, y
λf
), aside from a phase factor. when the distance

between the input and the lens is matching the focal length, i.e. z = f , the phase factor equals
to 1 and the result is exactly the Fourier transform. In other words, the field at the focal plane
can be calculated as as Fraunhofer diffraction evaluated at z = f .

1.3 Vectorial Optics

1.3.1 Polarization

The solution of Maxwell’s equations in vacuum (or in a homogeneous insulating material) can be
written as a superposition of the following plane waves:

E(z, t) =

⎧⎪⎪⎩E0xe
iϕx

E0ye
iϕy

⎫⎪⎪⎭ei(kz−ωt) (1.23)

where the amplitude term is described by a 2-vector called phasor. The polarization state of light
depends on the relative amplitude and phase of the two components on the phasor.

1.3.1.1 Jones formalism

The normalized phasor is called Jones vector, which can be equivalently written in the linear or
circular basis (see Table 1.2). Namely, a generic Jones vector |P ⟩ is

|P ⟩ = cH |H⟩+ cV |V ⟩ = (1.24)

= cR |R⟩+ cL |L⟩ (1.25)

where the coefficients c are complex numbers. Thus, the polarized electric field is
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1 Elements of Optics 1.3 Vectorial Optics

Linear basis Diagonal basis Circular basis

|H⟩
⎧⎪⎪⎩1
0

⎫⎪⎪⎭ |D⟩
⎧⎪⎪⎩1
1

⎫⎪⎪⎭ |R⟩ 1√
2

⎧⎪⎪⎩ 1
−i

⎫⎪⎪⎭
|V ⟩

⎧⎪⎪⎩0
1

⎫⎪⎪⎭ |A⟩
⎧⎪⎪⎩ 1
−1

⎫⎪⎪⎭ |L⟩ 1√
2

⎧⎪⎪⎩1
i

⎫⎪⎪⎭
Table 1.2: The most common bases used to represent a Jones vector with the corresponding Ket notation.

|E⟩ = E0e
ikz−iωt |P ⟩ (1.26)

Anisotropic optical elements can act either on the amplitude or the phase of a polarization state.
Elements acting only on the amplitude are called polarizers and those acting only on the phase
are called phase retarders or wave plates. Such elements are described by the 2×2 Jones matrices
of Table 1.3. Notably, Jones Matrices are unitary and with determinant 1. In other words, they
are members of the SU(2) group.

Linear Polarizer Phase Retarder⎧⎪⎪⎩1 0
0 0

⎫⎪⎪⎭ ⎧⎪⎪⎩eikδ 0
0 1

⎫⎪⎪⎭
Table 1.3: Jones matrices of optical elements aligned horizontally.

Optical elements act differently depending on the orientation of their optical axis. The matrix J
of a rotated optical element can be calculated as follows

J(θ) = R(−θ)JR(θ) (1.27)

where the rotation matrix is

R(θ) =

⎧⎪⎪⎩cos θ − sin θ
sin θ cos θ

⎫⎪⎪⎭ (1.28)

Two wave plates are of particular interest for their practical applications. The matrix of a half-
wave plate can be obtained by assuming that the thickness of the retarder is δ = λ/2. In this
case, the phase difference of the two polarization components is π. Similarly, the matrix of a
quarter wave-plate can be obtained assuming δ = λ/4. The corresponding phase difference is
π/2.

With some algebra, we can prove that a half-wave plate rotated by 45◦ rotates a linearly
polarization state by 90◦.

Jλ/2(45
◦) |H⟩ = |V ⟩ Jλ/2(45

◦) |V ⟩ = |H⟩ (1.29)
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1.3 Vectorial Optics 1 Elements of Optics

Similarly, a quarter-wave plate rotated by 45◦ converts a linearly polarization state into a
circularly polarization state.

Jλ/4(45
◦) |H⟩ = |R⟩ Jλ/4(45

◦) |V ⟩ = |L⟩ (1.30)

1.3.1.2 Stokes formalism

The Jones formalism is about the fields, while the Stokes formalism is about the intensity. A
Stokes vector has four entries

s = (s0, s1, s2, s3)
T (1.31)

which are the Stokes parameters, calculated as

s0 = |⟨E|E⟩|2 (1.32)

s1 = |⟨E|H⟩|2 − |⟨E|V ⟩|2 (1.33)

s2 = |⟨E|D⟩|2 − |⟨E|A⟩|2 (1.34)

s3 = |⟨E|R⟩|2 − |⟨E|L⟩|2 (1.35)

In other words, the first component describes the total intensity of light, while the other compo-
nents describe the excess of linear, diagonal, and circular polarization, respectively. Importantly,
the stokes parameters are not linearly independent. Namely, the following relation applies

s20 = s21 + s22 + s23 (1.36)

If normalized with respect to s0, the last three elements of the Stokes vector can be written as

s1 = cos(2ψ) cos(2χ) (1.37)

s2 = sin(2ψ) cos(2χ) (1.38)

s3 = sin(2χ) (1.39)

where ψ is the azimuthal angle and χ is the ellipticity angle. Namely, they parameterize in
spherical coordinates the surface of a unit sphere, known as Poincaré sphere. A point on the
surface of the Poincaré sphere uniquely defines a polarization state.

Optical elements can be described as matrices also using Stokes formalism. In this case, they
become 4 × 4 matrices and are known as Mueller matrices M . They can be obtained from the
corresponding Jones Matrices J using the following transformation

M = A(J ⊗ J∗)A−1 (1.40)

where ⊗ denotes the Kronecker product and
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1 Elements of Optics 1.4 Quantum optics

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (1.41)

Two examples are shown in Table 1.4. Note that Mueller matrices have always real entries.

Linear Polarizer Phase retarder⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 0
0 1 0 0
0 0 cos kδ sin kδ
0 0 − sin kδ cos kδ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Table 1.4: Mueller matrices of optical elements aligned horizontally.

Once again, we can find the matrix of a rotated component applying the following transformation

M(θ) = R(−θ)MR(θ) (1.42)

where, in this case, the rotation matrix is

R(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 0
0 cos(2θ) sin(2θ) 0
0 − sin(2θ) cos(2θ) 0
0 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (1.43)

1.4 Quantum optics

The Hamiltonian of a harmonic oscillator is

Ĥ =
p̂2

2m
+
mω2q̂2

2
(1.44)

where p̂ and q̂ are, respectively, the momentum and position operators, which follow the canonical
commutator relation

[q̂, p̂] = ℏ (1.45)

They are conveniently rewritten into the following dimensionless operators

X̂ =
(︂mω
2ℏ

)︂1/2

q̂ (1.46)

Ŷ =

(︃
1

2mℏω

)︃1/2

p̂ (1.47)
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1.4 Quantum optics 1 Elements of Optics

known as the field quadrature operators. The Hamiltonian can be rewritten using the quadrature
operators as

Ĥ = ℏω
(︂
X̂ + Ŷ

)︂
(1.48)

The quadrature operators can be identified with the electric and magnetic part of an oscillating
electromagnetic field. Equivalently, they can be seen as the in-phase and the in-quadrature part of
the electric field. Namely, the operator representing the electric field with a specific polarization
and wavelength is

Ê(r, t) =

(︃
2ℏω
ε0V

)︃1/2(︂
X̂ cos(ωt− k · r) + Ŷ sin(ωt− k · r)

)︂
(1.49)

We now define the following operators

â = X̂ + iŶ (1.50)

â† = X̂ − iŶ (1.51)

known, respectively, as the destruction and creation operators. Using those operators, the electric
field can be rewritten as

Ê(r, t) =

(︃
ℏω
2ε0V

)︃1/2(︁
âe−i(ωt−k·r) + â†ei(ωt−k·r))︁ (1.52)

Namely, the destruction and creation operators are proportional, respectively, to the positive and
negative frequency part of the electric field. The Hamiltonian is reshaped as

Ĥ = ℏω
(︃
N̂ +

1

2

)︃
(1.53)

where N̂ = â†â is the number operator. The eigenstates |n⟩ are called number states. The
corresponding Eigenvalues are

En = ℏω
(︃
n+

1

2

)︃
(1.54)

Namely, the energy levels are discrete with spacing ℏω.
Each longitudinal mode and polarization mode of an electromagnetic field is described by the

Hamiltonian 1.53 whose eigenstates are known as photons.
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2
Image Formation Theory

2.1 Linear Space-Invariant Systems

A Linear Space-Invariant (LSI) system is a map

S : f ↦→ g (2.1)

defined by the following properties

• Linearity: the output g is linear in the input f

g = S[f ] ⇒ S[a · f1 + b · f2] = a · S[f1] + b · S[f2] = a · g1 + b · g2 (2.2)

• Shift-invariance: the output of a shifted input is a shifted output

g(x) = S[f(x)] ⇒ g(x− x0) = S[f(x− x0)] (2.3)

Any input function can be written as

f(x) = f(x) ∗ δ(x) =
∫︂
R
f(χ)δ(x− χ) dχ (2.4)

Thus,

g(x) =

∫︂
R
f(χ)S[δ(x− χ)] dχ =

∫︂
R
f(χ)h(x− χ) dχ = f(x) ∗ h(x) (2.5)

where h(x) is the impulse response of the LSI system.

11



2.3 Fourier Optics 2 Image Formation Theory

2.2 Geometrical Optics

With one or more lenses, it is possible to generate an image, namely to generate a rescaled copy
of rays of light. In this section, we discuss imaging systems in terms of ray transfer matrices.

2.2.1 Single lens system

Consider a system composed of a single lens. Taking also into account the space before and after
the lens, we find the following matrix(︃

1 z2
0 1

)︃(︃
1 0
− 1

f
1

)︃(︃
1 z1
0 1

)︃
=

(︃
1− z2

f
z1 + z2 − z1z2

f

− 1
f

1− z1
f

)︃
(2.6)

In order to have the formation of an image, the B element of the matrix has to be zero. Thus,
the following condition has to be verified

1

z1
+

1

z2
=

1

f
(2.7)

Consequently, the A element equals − z2
z1

and can be interpreted as the magnification factor.

2.2.2 Two lenses system

Consider a system composed by two lenses separated by a distance d. The corresponding matrix
is

(︃
1 z2
0 1

)︃(︃
1 0

− 1
f2

1

)︃(︃
1 d
0 1

)︃(︃
1 0

− 1
f1

1

)︃(︃
1 z1
0 1

)︃
=

=
1

f1f2

(︃
f1f2+dz2−f2d−f2z2−f1z2 f1f2d+f1f2z1+f1f2z2−f2z1z2−f1z1z2+dz1z2−f2dz1−f1dz2

−f1−f2+d f2f1+dz1−f1d−f1z1−f2z1

)︃
(2.8)

It is easy to verify that the B element is zero if z1 = f1 and z2 = f2. Moreover, if d = f1+f2 the
C element is also zero, meaning that the system is afocal. In this case, the lateral magnification
is A = −f2/f1 and the angular magnification is D = −f1/f2.

2.3 Fourier Optics

We now consider a system composed by two lenses – with focal length f1 and f2 – separated by
a distance d. We consider the starting field at a distance z1 from the first lens and the output
field at a distance z2 from the second lens. The propagation is calculated as follows

U1 = ((((U0 ∗ Fz1) · F−f1) ∗ Fd) · F−f2) ∗ Fz2 (2.9)

The Fourier transform of the above equation is

12



2 Image Formation Theory 2.3 Fourier Optics

Û1 =
(︂(︂(︂(︂

Û0 · F̂ z1

)︂
∗ F̂−f1

)︂
· F̂ d

)︂
∗ F̂−f2

)︂
· F̂ z2 (2.10)

Explicitly, it is written as

Û1(ν
′′) =

∫︂
R4

Û0(ν) exp
[︂
−iπλ

(︂
z1ν

2 − f1(ν
′ − ν)

2
+ dν ′2 − f2(ν

′′ − ν ′)2 + z2ν
′′2
)︂]︂

dν dν ′

(2.11)
Assuming z1 = f1 and z2 = f2, we have

Û1(ν
′′) =

∫︂
R4

Û0(ν)e
−iπλ(d−f1−f2)ν′2e−i2πλf1νν′e−i2πλf2ν′ν′′ dν dν ′ (2.12)

Transforming back to the real space, we obtain

U1(x) =

∫︂
R4

Û0(ν)e
−iπλ(d−f1−f2)ν′2e−i2πλf1ν·ν′

∫︂
R2

e−i2πλf2ν′·ν′′
ei2πx·ν

′′
dν ′′⏞ ⏟⏟ ⏞

δ(x−ν′λf2)

dν dν ′ =

= e
−iπλ(d−f1−f2)

r2

λ2f22

∫︂
R2

Û0(ν)e
−i2πν·xf1/f2 dν =

= U0

(︃
−f1
f2
x

)︃
e
−iπλ(d−f1−f2)

r2

λ2f22 (2.13)

This result shows that under imaging conditions (i.e. z1 = f1 and z2 = f2) the amplitude of the
output field U1 is a copy of the amplitude of the initial field U0, but inverted and rescaled by the
magnification factor M = f2

f1
. This implies that the light intensity at the two planes is identical,

thus at z2 there is an image of the plane at z1. If the distance between the two lenses is equal
to d = f1 + f2, then the two fields are identical both in amplitude and in phase. In this case the
two planes are said to be optically conjugated.

2.3.1 Impulse response of an imaging system

We now consider the effect of the finite size of the lenses. The pupil function describes the
limited aperture of a lens, and it is defined as follows

P (r) =

{︄
1 if r ≤ R

0 if r > R
(2.14)

where r =
√︁
x2 + y2 and R is the radius of the lens. We now calculate the propagation of a

point-like source U0(x) = δ(x) through a two-lenses imaging system. As shown before, the value
of d has no effect on the intensity at the image plane. Therefore, we choose d = 0 for the sake
of simplicity. The output field is

13



2.3 Fourier Optics 2 Image Formation Theory

H = ((δ ∗ Fz1) · P · F−f1 · F−f2) ∗ Fz2 (2.15)

Explicitly

H(x) =

∫︂
R2

P (x′) exp

[︃
ik

2

(︃
1

nz1
− 1

f1
− 1

f2
+

1

z2

)︃
r′2

]︃
exp

[︃
−ik
z2
x · x′

]︃
dx′ (2.16)

Where we neglected pure multiplicative phase factors. The imaging condition implies

1

nz1
+

1

z2
− 1

f1
− 1

f2
= 0 (2.17)

Therefore, we impose z2 = f2 and z1 = f1/n + z. Using a McLaurin expansion, we get 1
nz1

∼
1
f1

(︂
1− n z

f1

)︂
. By substituting these values, we get

H(x) =

∫︂
R2

P (r′) exp

[︃
−ik

2

nzr′2

f 2
1

]︃
exp

[︃
− ik
f2
x · x′

]︃
dx′ (2.18)

That is the Fourier transform of a circularly symmetric function. Therefore, we can rewrite the
integral as a zero-order Hankel transform

H(r) =

∫︂ R

0

exp

(︃
−ik

2

nzr′2

f 2
1

)︃
J0

(︃
k

f2
rr′

)︃
r′ dr′ (2.19)

Changing the variable r′ with ρ = r′/R and defining the numerical aperture of the first lens as
NA = nR/f1 we finally obtain

H(r, z) =

∫︂ 1

0

exp

(︃
−ik

2

NA2

n
ρ2z

)︃
J0

(︃
kNA

M
ρr

)︃
ρ dρ (2.20)

where we neglected pure multiplicative factors and used the definition of the magnification as
M = nf2/f1.

2.3.2 Coherence of light

The finite temporal coherence of light can be described by random phase shifts of the electro-
magnetic wave

E1(t) =
+∞∑︂

n=−∞

exp (iωt+ iϕn)Π

(︃
t

T
− n

2

)︃
(2.21)

Now consider the same electric field, time-shifted by τ

E2(t− τ) =
+∞∑︂

m=−∞

exp (iωt− iωτ + iϕm)Π

(︃
t− τ

T
− m

2

)︃
(2.22)
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2 Image Formation Theory 2.3 Fourier Optics

The total intensity of the sum of the two fields is calculated as

|E1 + E2|2 = |E1|2 + |E2|2 + E∗
1E2 + E1E

∗
2 (2.23)

The first two terms are proportional to the intensity of each field, the last two terms describe the
interference between the two fields.

E∗
1E2 = exp (−iωτ)

∑︂
m,n

exp (iϕn − iϕm)Π

(︃
t

T
− n

2

)︃
Π

(︃
t− τ

T
− m

2

)︃
(2.24)

given a fixed τ , the product of the two rectangular functions is either 0 or 1, depending on the
value of n − m. We now consider only the couple (n,m) such as this product is equal to 1.
Therefore, ∑︂

m,n

exp (iϕn − iϕm) ≈ δm,n (2.25)

Therefore the interference term is not zero only if m = n and

Π

(︃
t

T

)︃
Π

(︃
t− τ

T

)︃
> 0 (2.26)

which implies |τ | < T . Indeed, T is the coherence time and defines the maximum delay beyond
which the interference term can be neglected.

The value τ defines the visibility of the interference. Indeed, the total signal collected in an
ideally infinite amount of time from the interference terms is

∫︂
R
[E∗

1(t)E2(t− τ) + E1(t)E
∗
2(t− τ)] dt = 2 cos(ωτ)

∫︂
R
Π

(︃
t

T

)︃
Π

(︃
t− τ

T

)︃
dt =

= (T − |τ |)2 cos(ωτ) (2.27)

Thus, the visibility of the interference cos(ωt) decreases linearly with |τ |. This linear behaviour
is a consequence of this simplified model which uses rectangular coherence windows. A more
realistic model would still predict a visibility monotonically decreasing with τ , but with a non-
linear trend. For perfectly incoherent light T → 0 and the interference signal can be seen as δ(τ).
The same reasoning which led to the results of this section can be applied to space to describe
spatial coherence.

2.3.3 Incoherent imaging

The wide-field image formation is

i(x) =

∫︂ T

0

|[O(x′) ∗H(x′)] (x)|2 dt = (2.28)

= T

∫︂
R6

O(x′)O∗(x′′)H(x− x′)H∗(x− x′′) dx′ dx′′

15
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which can be seen as a spatial correlation function at delay x′ − x′′. For perfectly incoherent
light, the correlation is ∫︂

R6

E(x′)E∗(x′′) dt = |E(x′)|2δ(x′ − x′′) (2.29)

Therefore, the image formed with incoherent light is

i(x) = T

∫︂
R3

|O(x′)|2|H(x− x′)|2 dx′ ∝ [o ∗ h](x) (2.30)

where
h(x) = |H(x)|2 (2.31)

is the intensity Point Spred Function (PSF) and

o(x) = |O(x)|2 (2.32)

is the distribution of light-emitters in the object plane.

2.3.4 Lateral and axial resolution

Using equation 2.20 with object plane coordinates, the intensity PSF is

h(r, z) =

⃓⃓⃓⃓∫︂ 1

0

exp

(︃
−ik

2

NA2

n
ρ2z

)︃
J0(kNAρr)ρ dρ

⃓⃓⃓⃓2
(2.33)

In perfect focus condition (z = 0), this equation becomes

h(r, 0) =

⃓⃓⃓⃓∫︂ 1

0

J0(kNArρ)ρ dρ

⃓⃓⃓⃓2
=

⃓⃓⃓⃓∫︂ kNAr

0

J0(x)x

(kNAr)2
dx

⃓⃓⃓⃓2
=

⃓⃓⃓⃓
J1(kNAr)

kNAr

⃓⃓⃓⃓2
(2.34)

where we used the property of Bessel functions d
dx
[Jν(x)x

ν ] = Jν−1(x)x
ν . The first zero of J1(x)

is at x0 ≈ 3.8317. Solving the equation kNAr = x0 for r, we obtain the distance between the
peak of the PSF and its first minimum

rmin = 0.61
λ

NA
(2.35)

This is the minimum lateral distance resolvable by a standard imaging system, according to
Rayleigh’s criterion.

Along the optical axis (r = 0) the intensity profile is

h(0, z) =

⃓⃓⃓⃓∫︂ 1

0

exp

(︃
−ik

2

NA2

n
ρ2z

)︃
ρ dρ

⃓⃓⃓⃓2
=

⃓⃓⃓⃓
n

NA2kz

[︃
exp

(︃
−ik

2

NA2

n
z

)︃
− 1

]︃⃓⃓⃓⃓2
=

=

(︃
2n

kzNA2

)︃2

sin2

(︃
kzNA2

4n

)︃
(2.36)
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2 Image Formation Theory 2.4 Frequency analysis of imaging systems

The first zero of the cardinal sine function sin(x)
x

is at x0 = π. Solving the equation kzNA2

4n
= x0

for z, we obtain the distance between the peak of the axial PSF and its first minimum

zmin =
2λn

NA2 (2.37)

This is the minimum axial distance resolvable by a standard imaging system, according to
Rayleigh’s criterion.

2.4 Frequency analysis of imaging systems

A linear imaging system acts as a low-pass filter on the signal emitted from a sample. The spatial
frequencies that can be collected are defined by the Optical Transfer Function (OTF), which is
the Fourier Transform of the impulse response (PSF).

From equation 2.18, we see that in focus (z = 0) the field PSF is the Fourier transform of
the pupil function. Thus, the OTF for coherent imaging is

OTF = F{H(x)} = P

(︃
x′

λf

)︃
(2.38)

The OTF for incoherent imaging is

OTF = F{h(x)} = P

(︃
x′

λf

)︃
∗ P

(︃
− x′

λf

)︃
(2.39)

If P is a rectangular function with length 2R, then the incoherent OTF is a triangular function
with cut-off frequency

νo =
2R

λf
=

2NA

λ
(2.40)

where NA = f/R.
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3
Deterministic super-resolution microscopy

3.1 Confocal Microscopy

Consider the Intensity collected by a photodiode placed before a pinhole

i(x) =

∫︂
R2

p(−x′) · [o(x′ − x) · hexc(x′)] ∗ hem(x′) dx′ =

=

∫︂
R4

p(−x′)o(x′′ − x)hexc(x
′′)hem(x

′ − x′′) dx′ dx′′ =

=

∫︂
R2

o(x′′ − x)hexc(x
′′)

∫︂
R2

p(−x′)hem(x
′ − x′′) dx′ dx′′ =

=

∫︂
R2

o(x′′ − x)hexc(x
′′)[p(−x′′) ∗ hem(−x′′)] dx′′ =

= o(x) ⋆ {hexc(x) · [p(−x) ∗ hem(−x)]} =

= o(x) ∗ {hexc(−x) · [p(x) ∗ hem(x)]} (3.1)

Namely, we proved that the confocal PSF is

h(x) = hexc(−x) · [p(x) ∗ hem(x)] (3.2)

We now consider two limit cases.
The first one is that of the infinitely large pinhole. Assuming normalized PSFs, we have

p(x) ∗ hem(x) = 1. Thus, the PSF of a laser-scanning system with an open pinhole is

hLSM(x) = hexc(−x) (3.3)

18



3 Deterministic super-resolution microscopy 3.2 Stimulated Emission Depletion Microscopy

The second case is that of the infinitely small pinhole. In this case, we assume p(x) = δ(x)
and thus p(x) ∗ hem(x) = hem(x). We found out that the PSF of a confocal laser scanning
microscope is

hCLSM(x) = hexc(−x) · hem(x) (3.4)

To quantify the enhancement in resolution due to CLSM we consider the simplified case of
Gaussian PSFs

hn(x) =
1

2πσ2
n

exp

(︃
− x2

2σ2
n

)︃
(3.5)

where σ is the standard deviation. Thus, the resulting PSF is the product of two Gaussian
functions. The result is a narrower Gaussian function with the following standard deviation

σCLSM =

√︄
σ2
emσ

2
exc

σ2
em + σ2

exc

(3.6)

Neglecting the Stokes-shift, we get that σISM = σLSM/
√
2. However, this result requires a point-

like pinhole, which would result in no signal reaching the detector. Thus, there is a trade off
between resolution and signal-to-noise ratio in CLSM.

3.2 Stimulated Emission Depletion Microscopy

The STED concept is about depleting the fluorescence (spontaneous emission) from the periphery
of an excited spot by exploiting the phenomenon of stimulated emission.

The spontaneous emission rate is kF . The stimulated emission rate is kS and depends on the
flux of STED photons and the corresponding cross-section. We define the saturation intensity
Isat as the STED intensity such that kS = kF . Thus,

kS = kF ζ ζ = ISTED/Isat (3.7)

where ζ is known as the saturation factor.
We now consider the rate equations of a fluorophore exposed with excitation and depletion

light.

∂N1

∂t
= −kFN1 − kSN1 + kSN

∗
0 (3.8)

∂N∗
0

∂t
= −kVN∗

0 − kSN
∗
0 + kSN1 (3.9)

We assume that at t = 0, we have N1(0) = 1 and all other states unpopulated. We also
assume a squared STED pulse with finite duration TS. Lastly, we assume the vibrational state
to have a vanishingly short lifetime (kV → +∞). Therefore, N∗

0 = 0 at each time, and we can
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3.2 Stimulated Emission Depletion Microscopy 3 Deterministic super-resolution microscopy

neglect the last term of the first rate equation (anti-Stokes excitation). The rate equation of the
excited state becomes

∂N1

∂t
= −kFN1 − kSN1 (3.10)

and the solution is

N1(t) =

{︃
exp(−kF t− kSt) 0 ≤ t < TS
exp(−kSTS) exp(−kF t) t ≥ TS

(3.11)

We define the fluorescence probability per molecule as

F =

∫︂
N1(t) dt (3.12)

For high STED intensities, we have that kS ≫ kF , suggesting that it is useful to collect photons
only after the STED pulse (gated-STED). The fluorescence probabilities with and without the
STED beam are

F (ζ) =

∫︂ +∞

Ts

exp(−kSTS) exp(−kF t) dt =
1

kF
exp [−TSkF (1 + ζ)] (3.13)

F (0) =

∫︂ +∞

Ts

exp(−kF t) dt =
1

kF
exp (−TSkF ) (3.14)

The ratio of the fluorescence probabilities gives the depletion function

η(ζ) =
F (ζ)

F (0)
= exp (−kFTSζ) (3.15)

The effective excitation PSF is given by

h(ζ)exc(x) = h(0)exc(x) · η[ζ(x)] (3.16)

In order to improve the lateral resolution, the fluorescence has to be suppressed only from the
periphery of the excitation PSF. Thus, the intensity profile of the STED beam has to be annular
shaped. For simplicity, we approximate the excitation PSF with a Gaussian function and the
center of the STED beam with a parabolic function

kFTSζ(x) ∼
1

2
ζx2 (3.17)

Thus,

h(0)exc(x) · η[ζ(x)] = exp

(︃
− x2

2σ2
exc

)︃
· exp

(︃
−1

2
ζx2

)︃
=

= exp

[︃
−1

2

(︃
1

σ2
exc

+ ζ

)︃
x2

]︃
(3.18)
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3 Deterministic super-resolution microscopy 3.3 Image Scanning Microscopy

Thus, the excitation standard deviation is reduced to

σexc(ζ) =
σexc√︁

1 + ζσ2
exc

(3.19)

The complete PSF of a STED system is given by

h(ζ)(x) = h(ζ)exc(−x) · hdet(x) (3.20)

Approximating also the detection PSF as a Gaussian, we have

σSTED =

√︄
σ2
detσ

2
exc

σ2
det(1 + ζσ2

exc) + σ2
exc

∼
ζ→+∞

σexc√︁
1 + ζσ2

exc

(3.21)

3.3 Image Scanning Microscopy

The scanned image generated by the detector element at position xd can be written as

i(xs|xd) = o(xs) ∗ h(xs|xd) (3.22)

where o(xs) is the specimen, here considered as a distribution of light emitters. The PSF is

h(xs|xd) = hexc(−xs) · [p(xs − xd) ∗ hem(xs)] =

= hexc(−xs) · hdet(xs − xd) (3.23)

In order to grasp the core idea behind image scanning microscopy (ISM), we first introduce its
concept using a Gaussian approximation and later proceed with the general case.

3.3.1 Gaussian model

In this subsection, we simplify the model approximating the emission and excitation PSF with a
Gaussian distribution with circular symmetry,

g(x|µ, σ) = 1

2πσ2
exp

[︃
−(x− µ)2

2σ2

]︃
(3.24)

where µ is the mean and σ is the standard deviation. Thus, the resulting PSF is

h(xs|xd) = g(xs|0, σexc) · g(xs|xd, σdet) (3.25)

Notably, the product of two Gaussian function is another Gaussian function with the following
properties:

µ(xd) =
µdetσ

2
exc + µexcσ

2
det

σ2
det + σ2

exc

=
xdσ

2
exc

σ2
det + σ2

exc

σISM =

√︄
σ2
detσ

2
exc

σ2
det + σ2

exc

(3.26)
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where µ(xd) is known as shift-vector, and σISM is independent of xd. The intensity of the
resulting Gaussian function is also rescaled by the following rescaling factor

s(xd) =
1

2π (σ2
det + σ2

exc)
exp

[︃
− x2

d

2(σ2
det + σ2

exc)

]︃
(3.27)

Thus, the resulting PSF can be written as

h(xs|xd) = s(xd) · g[xs|µ(xd), σ] (3.28)

Neglecting the Stokes-shift, we can assume σexc ∼ σdet to obtain the well-known
√
2 gain in

resolution. However, the images generated by each detector element are shifted with respect to
the central element. Indeed, the scanned-image is

i(xs|xd) = o(xs) ∗ h(xs|xd) = i[xs − µ(xd)] (3.29)

If all the images are simply summed together, the resolution gain is lost, and the resulting image
is equivalent to that generated by a traditional confocal microscope with an open pinhole (as
large as the detector size). The pixel reassignment (PR) algorithm shifts back each image

i(xs|xd) −→
PR

i[xs + µ(xd)|xd] = i(xs|0) · s(xd) (3.30)

and constructs a new image summing the reassigned images

iISM(xs) = i(xs|0) ·
∫︂
R2

s(xd) dxd (3.31)

thus conserving the gain in resolution and enhancing the signal-to-noise ratio (SNR).

3.3.2 General model

The typical assumption behind ISM is that the complete PSF can still be written as a new shifted
function

hexc(−xs) · hdet(xs − xd) ∝ h[xs − µ(xd)] (3.32)

Thus, the scanned-images generated by each detector are all of similar shape, but shifted,

i(xs|xd) = o(xs) ∗ h(xs|xd) ∝ i[xs − µ(xd)] (3.33)

Instead of using the theoretical values found using the Gaussian approximation, the shift vectors
are found by the adaptive pixel reassignment (APR) algorithm. This latter first calculates the
correlogram

R(xs|xd) = F−1

⎧⎨⎩ F{i(xs|xd)} · F{i(xs|0)}⃓⃓⃓
F{i(xs|xd)} · F{i(xs|0)}

⃓⃓⃓
⎫⎬⎭ (3.34)
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and later finds the shift vectors as the position of maximum correlation

µ(xd) = argmax
xs

{R(xs|xd)} (3.35)

and shifts each scanned image of the corresponding shift vector

i(xs|xd) −−→
APR

i[xs + µ(xd)|xd] (3.36)

with the purpose of making all the scanned-images identical, except for an intensity scale factor

∀(xd,x
′
d) i[xs + µ(xd)] ∝ i[xs + µ(x′

d)] (3.37)

Rather than considering the scanned-image, the ISM image formation process can be seen
equivalently from the perspective of the detector. In fact, the detector array can be considered as
a small camera, capable of acquiring wide-field images that we call micro-images. The equation
of these latter can be found as follows:

i(xs|xd) = o(xs) ∗ [hexc(−xs) · hdet(xs − xd)] =

=

∫︂
R2

o(xs − x′) · hexc(−x′) · hdet(x′ − xd) dx
′ =

=

∫︂
R4

o(xs − x′) · hexc(−x′) · hdet(x′′)δ(x′′ − x′ + xd) dx
′ dx′′ =

=

∫︂
R2

o(xs − x′′ − xd) · hexc(−x′′ − xd)hdet(x
′′) dx′′ =

= [o(xs − xd) · hexc(−xd)] ∗ hdet(−xd) = i(xd|xs) (3.38)

As expected, the micro-image is simply given by the wide-field image formation law, but applied to
the illuminated object, i.e. the object multiplied by the excitation PSF. After APR, the reassigned
micro-image is

i[xd|xs + µ(xd)] = {o[xs − xd + µ(xd)] · hexc(−xd)} ∗ hdet(−xd) (3.39)

For clarity, we now rewrite the new coordinates of the micro-images as

u = xd − µ(xd) = xd
σ2
det

σ2
det + σ2

exc

(3.40)

where we have used the theoretical value of the shift-vectors found using the Gaussian approxi-
mation for simplicity. In this new coordinate system, the post-APR micro-image is

i(u|xs) =

[︃
o(xs − u) · hexc

(︃
−σ

2
det + σ2

exc

σ2
det

u

)︃]︃
∗ hdet

(︃
−σ

2
det + σ2

exc

σ2
det

u

)︃
(3.41)

In other words, the effect of APR is a digital shrinking of the excitation and detection PSFs with
respect to the object. In detail, the standard deviations of the PSFs become
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σexc −−→
APR

σexc
σ2
det

σ2
det + σ2

exc

σdet −−→
APR

σdet
σ2
det

σ2
det + σ2

exc

(3.42)

which are always smaller than the original standard deviation.
The relation 3.37 applies also to the micro-images

∀(xd,x
′
d) i[xd|xs + µ(xd)] ∝ i[xd|xs + µ(x′

d)] (3.43)

Notably, the proportionality factor in the above relation is independent of xs. Thus, the above
condition is satisfied only if equation 3.39 can be factored into a term depending only on xs and
another term depending only on xd. This can occur only in the following cases:

1. If o is constant over the whole space, namely it is a flat object. This case is trivial and we
will not consider it.

2. If µ(xd) = xd, then o depends only on xs and is constant with respect to xd. This case is
satisfied only if hexc = const, namely using a wide-field illumination. This would come at
the cost of sacrificing resolution and it is not of our interest.

3. If it is possible to achieve a perfect pixel reassignment. This case is possible only if we can
rewrite the product hexc(−xs) ·hdet(xs −xd) exactly as a new shifted function h(xs −µ).
Namely, the shape of the complete PSF h has to be independent of xd. This condition can
be satisfied in ideal confocal microscopy.

4. If the illumination spot is so small that only the position xs of the object o contributes to
image formation. This case is satisfied only using a point-like excitation hexc(xd) = δ(xd),
as in ideal STED microscopy.

We are interested only in the third and fourth case, analyzed in detail in the following sections.

3.3.3 The confocal case

In this section, we assume that the following relation is exact

hexc(−xs) · hdet(xs − xd) = h[xs − µ(xd)] (3.44)

where the complete PSF h[xs − µ(xd)] in general is not normalized. The normalization factor is
calculated as

s(xd) =

∫︂
R2

h[xs − µ(xd)] dxs =

∫︂
R2

hexc(−xs) · hdet(xs − xd) dxs =

= hexc(−xd) ∗ hdet(−xd)

(3.45)

Thus, we can rewrite the PSF as
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3 Deterministic super-resolution microscopy 3.3 Image Scanning Microscopy

h[xs − µ(xd)] = s(xd) · g[xs − µ(xd)] (3.46)

where g(xs) is a normalized function. Using assumption 3.44, we replicate the calculations that
led to equation 3.38 after performing APR

i(xs + µ(xd)|xd) = o[xs + µ(xd)] ∗ h[xs − µ(xd)] =

= {o[xs + µ(xd)] ∗ g[xs − µ(xd)]} · s(xd) =

= [o(xs) ∗ g(xs)] · s(xd) = i(xd|xs + µ(xd)) (3.47)

Notably, the scaling factor s(xd) is exactly the convolution of the excitation PSF with the detec-
tion PSF. Thus, we can write the equation of the micro-image after APR as

i(xd) = α · [hexc(−xd) ∗ hdet(−xd)] (3.48)

where α = o(xs) ∗ g(xs) is a proportionality factor with the units of a photon flux. Thus, the
reassigned micro-image equals the fingerprint of the image, except for an intensity scale factor.
The fingerprint f(xd) of the system is defined as the integral of the image i(xs|xd) over all the
scan points xs

f(xd) =

∫︂
R2

i(xs|xd) d
2xs =

∫︂
R2

o(xs) ∗ [hexc(−xs) · hdet(xs − xd)] dxs =

=

∫︂
R2

o(xs) dxs

∫︂
R2

hexc(−xs) · hdet(xs − xd) dxs =

= γ · [hexc(−xd) ∗ hdet(−xd)]

(3.49)

where γ =
∫︁
R2 o(xs) dxs is a scale factor that depends only on the sample distribution.

Therefore, we have found that under the assumption 3.44, the reassigned micro-image is
proportional to the fingerprint. Importantly, this mathematical relation is satisfied by a Gaussian
PSF, which is well known to be a good approximation for both detection and excitation PSFs
if ∥xd∥ ≲ 1Airy Unit. However, our result is more general, being valid for each function that
satisfies equation 3.44. Moreover, APR is an adaptive algorithm which can compensate for mild
deviations from ideality, since the shift-vectors are calculated as the translations that maximize
the similarity between the scanned images.

3.3.4 The STED case

Assuming an ideal STED system, we can impose a point-like excitation

hexc(xd, z0) ∼
ς→∞

ε · δ(xd) (3.50)

where ε is a (theoretically vanishing) scale factor. In this case, the shift vectors are null
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µ(xd) = xd
σ2
exc

σ2
det + σ2

exc

−−−−→
σexc→0

0 (3.51)

Thus, APR does not modify the micro-images. Using assumption 3.50, equation 3.38 becomes

i(xd|xs) = α · hdet(−xd) (3.52)

where α = ε · o(xs) is a proportionality factor with the units of a photon flux. We found
the interesting result that the micro-image obtained while performing STED microscopy is the
detection PSF.

Applying condition 3.50 to equation 3.49, we obtain the fingerprint of a STED image

f(xd) = γ · hdet(−xd) (3.53)

which corresponds to the detection PSF, except for a scale factor.

3.3.5 Focus-ISM

We have found that, after APR and under reasonable assumptions, the micro-images of an
ISM dataset are proportional to the fingerprint of the image. In this section, we generalize the
equations for the micro-images and for the fingerprint to the case of a three-dimensional object
o(xs, z). The micro-image of a 3D object is

i(xd|xs, z) =

∫︂
R
[o(xs − xd, z

′) · hexc(−xd, z − z′)] ∗ hdet(−xd, z − z′) dz′ (3.54)

where the convolution is calculated along the dimensions (xd, yd). Assuming that the sample is
localized on a single plane, we have o(xs−xd, z) = o(xs−xd)δ(z− z0). Using this assumption,
we obtain the micro-image of an object o placed at distance z0 from the image plane z

i(xd|xs, z) = [o(xs − xd, z0) · hexc(−xd, z − z0)] ∗ hdet(−xd, z − z0) (3.55)

After pixel reassignment, the micro-image becomes

i(xd|xs, z) = α(xs, z0) · [hexc(−xd, z − z0)] ∗ hdet(−xd, z − z0)] (3.56)

The fingerprint of an image generated by a 3D distribution of emitters o(xs, z) is

f(xd, z) =

∫︂
R2

i(xs|xd) dxs =

∫︂
R2

o(xs, z) ∗ h(xs, z|xd) dxs =

=

∫︂
R2

o(xs, z) ∗ [hexc(−xs, z) · hdet(xs − xd, z)] dxs =

=

∫︂
R

[︃∫︂
R2

o(xs, z − z′) dxs

∫︂
R2

hexc(−xs, z
′) · hdet(xs − xd, z

′) dxs

]︃
dz′ =

=

∫︂
R
γ(z − z′) · [hexc(−xd, z

′) ∗ hdet(−xd, z
′) dxs] dz

′ =

= γ(z) ∗ [hexc(−xd, z) ∗ hdet(−xd, z)]

(3.57)
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3 Deterministic super-resolution microscopy 3.4 Structured Illumination Microscopy

where γ(z) =
∫︁
R2 o(xs, z) dxs is a weight function that depends only on the sample distribution,

and the first convolution is calculated over the z-axis, while the second convolution is calculated
over the xs axes. Using the assumption that the sample is localised on a single plane, we have
γ(z) = γ0δ(z − z0) and we obtain

f(xd, z − z0) = γ0 · hexc(−xd, z − z0) ∗ hdet(−xd, z − z0) (3.58)

which is proportional to equation 3.56. We can use this result to write the equation of a micro-
image generated by multiple emitters at different axial planes

i(xd) =
K∑︂
k=1

αk · f(xd, zk) (3.59)

Notably the fingerprint is always centered with respect to the detector array, but its lateral width
depends on the axial position of the emitter. Approximating again each PSF with a Gaussian
function, the fingerprint is a Gaussian function as well. Considering only two contributes (in-focus
and out-of-focus), we finally obtain

i(xd) = α · g(xd|0, σsig) + β · g(xd|0, σbkg) (3.60)

where the weights of the Gaussian functions respect the conservation of the energy constraint

α + β =

∫︂
Σ

i(xd) d
2xd (3.61)

Notably, the standard deviation of the in-focus component can easily be measured experimentally.
The fingerprint is effectively a micro-image averaged over many scan points. Thus, the SNR of
the fingerprint is much higher than that of a micro-image. We can exploit this information to
calibrate σsig. This process can be performed with a separate experiment, or alternatively, it is
possible to calculate the fingerprint on a region of i(xs|xd) containing only in-focus emitters. If
fitted to a Gaussian function, the fingerprint of the sub-image provides an experimental measure
of σsig.

Once each micro-image has been separated in an in-focus and out-of-focus component, the
corresponding images are constructed as follows

isig(xs) = α(xs) ·
∫︂
R2

g(xd|0, σsig) dxd (3.62)

ibkg(xs) = β(xs) ·
∫︂
R2

g(xd|0, σbkg) dxd (3.63)

3.4 Structured Illumination Microscopy

The illumination pattern is
e(x) = 1 + cos (K · x+ ϕ) (3.64)
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the corresponding Fourier transform is

E(k) = δ(k) +
1

2

[︁
δ(k −K)eiϕ + δ(k +K)e−iϕ

]︁
(3.65)

The image formation model is

i(x|K, ϕ) = [o(x) · e(x|K, ϕ)] ∗ h(x) (3.66)

whose Fourier transform is

I(k|K, ϕ) =

[︃
O(k) +

1

2
O(k −K)eiϕ +

1

2
O(k +K)e−iϕ

]︃
·H(k) (3.67)

We need to solve for O(k), O(k−K), and O(k+K). Thus, we need (at least) three equations.
We obtain these latter by changing the phase to ϕ ∈

{︁
0, 2π

3
, 4π

3

}︁
. The solution is found by solving

the linear system⎛⎝I(k|ϕ1)

I(k|ϕ2)

I(k|ϕ3)

⎞⎠ = H(k)

⎛⎜⎝1 eiϕ1
2

e−iϕ1

2

1 eiϕ2
2

e−iϕ2

2

1 eiϕ3
2

e−iϕ3

2

⎞⎟⎠
⎛⎝ O(k)

O(k −K)

O(k +K)

⎞⎠ =

⎛⎜⎝1 eiϕ1
2

e−iϕ1

2

1 eiϕ2
2

e−iϕ2

2

1 eiϕ3
2

e−iϕ3

2

⎞⎟⎠
⎛⎝S1(k)

S2(k)

S3(k)

⎞⎠ (3.68)

The above system is solved for the vector of spectra S for different orientations K. Indeed, to
isotropically fill the Fourier space of the reconstructed object, the spatial frequency is chosen as

K = (K cos θ,K sin θ) (3.69)

where θ ∈
{︁
0, π

3
, 2π

3

}︁
and K is chosen as the cut-off frequency of the illumination lens: K = 2NA

λexc
.

The spectrum of the sample at each shift is then moved to the correct position K in the Fourier
space, and the super-resolution image is generated by anti-transforming the sum of all the spectra

iSIM(x) = F−1

{︄
A(k)

∑︁
nH(k +Kn)Sn(k +Kn)∑︁

n |H(k +Kn)|2 + ε

}︄
(3.70)

where ε is a regularization parameter and A(k) is an apodization function.
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4
Non-linear microscopy

Note that throughout this chapter we assume that the medium is homogeneous and isotropic and
as a consequence we can examine vectors and equations on a component-by-component basis.

A linear dielectric medium is characterized by a linear relation between the polarization density
P and the electric field E:

P = ε0χE, (4.1)

with ε0 the dielectric permittivity of empty space (= 8.854 · 10−12C2/Nm2) and χ a dimen-
sionless quantity called the susceptibility (which is a function of the frequency of the electric field
in case of an oscillating field).

FromMaxwell’s equations (in one dimension), we can derive the inhomogeneous wave equation
to describe the effect of the interaction between the electric field and the induced polarization P
in the medium.

∂2E

∂x2
− 1

c2
∂2E

∂t2
= µ0

∂2P

∂t2
(4.2)

Combining Eq. 4.2 and 4.1, we have:

∂2E

∂x2
− 1

c2
∂2E

∂t2
= µ0

∂2

∂t2
(ε0χE) (4.3)

Since 1
c2

= ε0µ0:

∂2E

∂x2
− (1 + χ)

c2
∂2E

∂t2
= 0, (4.4)

which is simply the homogeneous equation with c → c/
√
1 + χ = c/

√︁
ϵ/ϵ0 = c/n, with n

the (complex) refractive index.
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4.1 Second Harmonic Generation microscopy 4 Non-linear microscopy

4.1 Second Harmonic Generation microscopy

More generally, P is not proportional to E:

P = ε0
[︁
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

]︁
(4.5)

Usually, χ(2) > χ(3) > χ(4) > χ(5) . . .. The first term describes linear absorption, scattering
and reflection of light, the second term describes second harmonic generation and sum and
difference frequency generation and the third term describes two- and three-photon absorption,
third harmonic generation and stimulated Raman processes and coherent anti-Stokes Raman
scattering (CARS).

For strong enough electric fields, the nonlinear terms cannot be ignored. The wave equation
then becomes:

∂2E

∂x2
− n2

c2
∂2E

∂t2
= ε0µ0χ

(2) ∂
2

∂t2
(︁
E2

)︁
+ ε0µ0χ

(3) ∂
2

∂t2
(︁
E3

)︁
+ . . . (4.6)

Assume an oscillating electric field with angular frequency ω:

E(t) ∝ E0 exp(iωt) + E∗
0 exp(−iωt). (4.7)

Then,

E(t)2 ∝ E2
0 exp(2iωt) + 2 |E0|2 + E∗2

0 exp(−2iωt) (4.8)

We now have terms that vary at twice the original frequency, second harmonic generation.
Since the amplitude of the second-harmonic light is proportional to E2, also the second-harmonic
intensity scales with the square of the intensity of the incident wave. Since the second harmonic
emissions are added coherently, the intensity of the second-harmonic wave is also proportional to
the square of the length of the interaction volume L.

Therefore, to maximize the SHG efficiency, the incident wave must have the larges possible
power. This is typically accomplished by using pulsed lasers which may have a peak power of hun-
dreds of kW (while keeping the average power low enough to limit the amount of photodamage)
and focusing the beam with an objective lens.

The constant term in Eq. 4.8 corresponds to small steady contribution to the polarization
density, which creates a potential difference across the nonlinear material when the light beam
passes.

Energy (ω1 + ω2 = ω3) and momentum (k⃗1 + k⃗2 = k⃗3) have to be conserved in the process
of second harmonic generation. Conservation of energy shows that SHG generates a photon
with twice the energy; ”two red photons produce one blue photon”. Conservation of momentum
implies that

n(ω)
ω

c
+ n(ω)

ω

c
= n(2ω) · 2ω

c
. (4.9)

Hence,
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4 Non-linear microscopy 4.1 Second Harmonic Generation microscopy

n(2ω) = n(ω) (4.10)

This is usually not the case because of dispersion. However, birefringence can be used to
satisfy the phase matching requirement. In birefringent materials, the speed at which the wave
travels through the medium is different for different polarizations. By choosing the direction at
which the waves enters the medium, the birefringence may exactly compensate for dispersion.
For perfect phase matching, the SHG emission is 100% forward directed and co-propagates
with the laser. This situation holds for SHG from uniaxial crystals (e.g., potassium dihydrogen
phosphate (KDP) and β barium borate (BBO)) and from interfaces. The inherent randomness
and dispersion in real biological tissues results in a distribution of nonzero ∆k values. This
imperfect phase matching gives rise to a corresponding distribution of forward and backward
emitted components, and as a result SHG in tissues is best described as quasi coherent. Examples
of biological materials that produce SHG are collagen and myosin and consequently can be easily
imaged with label-free SHG microscopy.

From Eq. 4.5, it is clear that in systems that exhibit inversion symmetry, all even powers of
χ disappear. Liquids, gases, amorphous solids (such as glass), and even many crystals display
inversion symmetry, these materials cannot produce this type of nonlinear optical interactions.
For third-order processes, there is no such condition.

Focusing a laser through an objective lens imposes the Gouy phase shift, which is a phase
shift of the coherent light wave upon passing trough the focal point. The Gouy phase shift of
the electric field traveling in the z-direction is given by

ζ(z) = arctan

(︃
z

zR

)︃
, (4.11)

with

zR =
πw2

0

λ
(4.12)

the Rayleigh length.
All SHG scatterers inherit and preserve the phase of the illumination wave. Successive scat-

terers are therefore not in phase along the illumination wave vector but at a certain angle. To
estimate this angle, consider two SHG scatterers separated a distance d apart along the z di-
rection. Complete constructive interference of the SHG signal from both scatterers then occurs
under the angle θ

cos θ ≈ 1− 1

zRkω
. (4.13)

Hence, in order to collect most of the SHG signal, one can show that the NA of the condenser
lens NAC should be at least

NAC ≈ 2NAI

π
≈ 0.64NAI , (4.14)
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with NAI the NA of the objective lens.

Since SHG is most efficiently produced near the maximum intensity of the focused laser beam,
SHG offers a better resolution than linear imaging modalities operating at the same wavelength.
Alternatively, one can use a longer wavelength, which can penetrate more deeply into the sample
and is less damaging. Moreover, the large wavelength difference between the laser beam and the
SH signal allows easy filtering of the signal.

The design of an SHG microscope is very similar to a conventional laser-scanning confocal
microscope. Typically, a femtosecond pulsed laser beam or relatively long wavelength (800-1100
nm) is focused by an objective lens onto the sample. A set of galvo scan mirrors scans the laser
beam over the sample. Since most of the SHG signal is typically produced in ”forward” mode,
a condenser lens is used to collect the signal an focus is onto a large single-element detector,
such as a PMT. A pinhole, and hence descanning, is not needed, since the SHG is intrinsically
produced in a small focal volume. A sharp (5 or 10 nm wide) band-pass filter is installed in front
of the detector to allow the SHG to pass. The forward SHG is emitted in a dual-lobed pattern,
where the angle between these becomes larger at a higher NA. Thus, it is advantageous to use
a condenser with somewhat higher NA than the excitation objective,

To penetrate deeply into the sample, what is needed is an objective with a long working
distance (e.g., 3 mm for ×40, 0.8 NA), while keeping a reasonable NA ( 0.5–0.9, many higher-
NA lenses have insufficient working distances) and optimized for transmission of the near-IR laser
excitation.

Due to the coherence, the image formation process cannot be described by a convolution of
the object with an intensity PSF. Instead, one has to work with the field H and the object O,
and take the squared modulus after integration.

i (x) =
⃓⃓
χ(2)

⃓⃓2 ⃓⃓⃓⃓∫︂
H2 (x′ − x)O(x′)dA

⃓⃓⃓⃓2
(4.15)

4.1.1 Non-linear effects

This section gives a more detailed description of non-linear effects.

The response of the material to an electric field is described through the density of dipoles,
also known as the polarization P . We write the dependency on the electric field as the following
power series

P (t) = ε0

+∞∑︂
n=1

χ(n)En(t) = ε0χ
(1)E(t)⏞ ⏟⏟ ⏞
P (1)

+ ε0

+∞∑︂
n=2

χ(n)En(t)⏞ ⏟⏟ ⏞
P (NL)

(4.16)

The first term describes the linear response, while higher terms describe the non-linear response.
Note that second-order nonlinear optical interactions can occur only in noncentrosymmetric crys-
tals. Namely, only materials that do not display inversion symmetry. Instead, third-order nonlinear
optical interactions can occur for both centrosymmetric and non-centrosymmetric media. Higher
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order interactions are typically neglected, being extremely inefficient. For simplicity, we now
consider only the second-order non-linearity

P (2)(t) = ε0χ
(2)E2(t) (4.17)

We now assume an electric field as follows

E(t) = E1e
−iω1t + E2e

−iω2t + c.c. (4.18)

Typically, the two fields are called pump and idler. The beam generated by the non-linear process
is called signal. The second-order polarization is then

P (2)(t) = ϵ0χ
(2)
[︁
E2

1e
−2iω1t + E2

2e
−2iω2t

]︁
+ 2ϵ0χ

(2)
[︁
E1E2e

−i(ω1+ω2)t
]︁
+ (4.19)

+ 2ϵ0χ
(2)
[︁
E1E

∗
2e

−i(ω1−ω2)t
]︁
+ ϵ0χ

(2) [E1E
∗
1 + E2E

∗
2 ] + c.c. (4.20)

The following terms describe the second harmonic generation

P (±2ω1) = ϵ0χ
(2)E2

1 (4.21)

P (±2ω2) = ϵ0χ
(2)E2

2 (4.22)

The following terms describe the sum frequency generation

P (+ω1 + ω2) = 2ϵ0χ
(2)E1E2 (4.23)

P (−ω1 − ω2) = 2ϵ0χ
(2)E∗

1E
∗
2 (4.24)

The following terms describe the difference frequency generation

P (ω1 − ω2) = 2ϵ0χ
(2)E1E

∗
2 (4.25)

P (ω2 − ω1) = 2ϵ0χ
(2)E∗

1E2 (4.26)

The following terms describe the optical rectification

P (0) = 2ϵ0χ
(2) (E1E

∗
1 + E2E

∗
2) (4.27)

If the non-linear terms are not neglectable, the wave equation becomes

∇2E − n2

c2
∂2E

∂t2
=

1

ϵ0c2
∂2P (NL)

∂t2
(4.28)

Namely, the non-linear polarization acts as a source. Solving the non-linear wave-equation shows
that the generated fields have non-neglectable intensity only if the phase matching conditions are
respected

∆k = k1 + k2 − k3 = 0 (4.29)

∆ω = ω1 + ω2 − ω3 = 0 (4.30)
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The first condition describes the conservation of momentum, while the second one describes the
conservation of energy. Using the relation ck = ω and assuming collinear beams, we can rewrite
the first condition as

n1ω1

c
+
n2ω2

c
=
n3ω3

c
(4.31)

However, such condition cannot be achieved, because n(ω) is typically a monotonically increasing
function of ω. This limitation is practically circumvented by using birefringent materials. By
aligning the polarization of the field with the highest frequency to the crystal axis showing the
smallest refractive index, it is possible to achieve anisotropic phase-matching.

4.2 Two-photon fluorescence microscopy

Two-photon fluorescence may look very similar to SHG, since two low-energy photons are ’con-
verted’ into one higher-energy photon, but the two processes are quite different. SHG is a
second-order scattering process, while two-photon fluorescence is a third-order process that in-
volves actual absorption to an excited state. (In SHG, the destruction and creation of the photons
involves virtual transitions in which no energy is absorbed by the specimen. These virtual energy
levels are not energy eigenstates of the atom.)

The absorption cross-section σ for two-photon absorption processes is:

σ = σ(2)I, (4.32)

where σ(2) is the quantity describing the strength of the two-photon absorption process. Under
certain assumptions (e.g., the molecular transition rate must be small enough not to alter the
population of molecules in the ground state available for excitation), the two-photon absorption
cross-section can be expressed as follows:

σ(2) =
4π2ℏω2 Imχ(3)

n2c2
. (4.33)

The transition rate of an absorption process is given by

R = σI/ℏω. (4.34)

Hence, we find

R =
σ(2)I2

ℏω
. (4.35)

Thus, two-photon absorption scales with the square of the excitation intensity. Two-photon
absorption was first described by Maria Goeppert-Mayer in 1931. The molecular two-photon
absorption cross-section is usually quoted in the units of Goeppert-Mayer (1 GM = 10−50 cm4 s
photon−1).

Not that two-photon absorption can also happen with two photons of different energies. This
is called non-degenerate two-photon absorption or two-color two-photon excitation.
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Compared to single-photon excitation microscopy, two-photon excitation microscopy has sev-
eral advantages: fewer photointeractions enabling long term imaging of living samples (and
photo-damage by UV excitation can be avoided), imaging of thick specimens up to a depth of
about 1 mm, simultaneous excitation of different fluorescent molecules reducing 3D colocalization
errors.

Similar to SHG, two-photon fluorescence is only produced in the small volume of a focused
laser beam.

V ≈ 33nλ3

π3(NA)4
. (4.36)

For typical values (NA = 1.3, λ = 500 nm, n = 1.33), V is around 0.06 fL.
The two-photon fluorescence intensity collected in a two-photon microscope with objective

NA NA, equipped with a laser with power P and wavelength λ is

If ∝ σ(2)P 2

(︃
NA2

λ

)︃2

. (4.37)

The imaging process in a two-photon fluorescence microscope can be described similarly as
for one-photon:

i(x) ∝ [o ∗ h2](x), (4.38)

with o the distribution of emitters in the object plane and h2 the two-photon PSF.

h2(u, v) =

⃓⃓⃓⃓
2

∫︂ 1

0

Jo(vρ) exp
(︁
−iuρ2/2

)︁
ρdρ

⃓⃓⃓⃓4
, (4.39)

with u = k(NA)2z and v = k(NA)r.
Two-photon fluorescence is typically detected in non-descanned detection in backward mode,

but also the combination with descanned detection is possible, for example to combine it with
ISM.
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Fluorescence spectroscopy

5.1 Fluorescence Correlation Spectroscopy

The three-dimensional diffusion equation for particles undergoing Brownian motion is:

∂ρ(r, t)

∂t
= D∇2ρ(r, t), (5.1)

with ρ the particle density at position r at time t andD the diffusion coefficient. For simplicity,
we continue with one spatial dimension:

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
. (5.2)

If we assume a single particle at x0 = 0 at t0 = 0, the probability density of finding it at
position x at time t is:

ρ(x, t) =
1√
4πDt

exp

(︃
− x2

4Dt

)︃
(5.3)

One can prove that the mean squared displacement (MSD) ⟨x2(t)⟩ of this particle is⟨︁
x2(t)

⟩︁
=

∫︂
x2(t)ρ(x, t)dx = 2Dt. (5.4)

The diffusion coefficient gives information on the dynamics in the sample, and therefore also
on the size of the particle via the Stokes-Einstein equation:

D =
kBT

6πηr
, (5.5)
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with kB the Boltzmann constant, η the dynamic viscosity and r the particle radius.
Measuring the MSD for individual particles is often infeasible (too high concentration, too

fast for camera detection, etc.). Fluorescence correlation spectroscopy (FCS) provides a solution.
Consider a confocal setup measuring the time-dependent fluorescence intensity F (t) in a

sample of randomly moving fluorescent particles. Then,

F (t) = α

∫︂
W (r)ρ(r, t)dV, (5.6)

with α a constant describing the quantum yield and detector sensitivity,W (r) the observation
volume, and dV = dxdydz.

The autocorrelation of this signal is

G(τ) =
⟨δF (t)δF (t+ τ)⟩

⟨F (t)⟩2
, (5.7)

with

δF (t) = F (t)− ⟨F (t)⟩. (5.8)

Alternatively, combining Eq. 5.7 and 5.8 and making use of ⟨F (t)⟩ = ⟨F (t+ τ)⟩, G can also
be calculated as:

G(τ) =
⟨F (t)F (t+ τ)⟩

⟨F (t)⟩2
− 1. (5.9)

For τ = 0, we have

G(0) =
⟨δF (t)δF (t)⟩

⟨F (t)⟩2
=

⟨(δF (t))2⟩
⟨F (t)⟩2

. (5.10)

The number of emitted/detected photons follows a Poisson distribution. Therefore, the
numerator, which describes the variance in F , is equal to ⟨F ⟩. Thus,

G(0) ∝ Variance

⟨N⟩2
∝ 1

⟨N⟩
(5.11)

If we assume that the change in intensity is solely caused by the translational movement of
the particles, and if we assume a 3D Gaussian focal volume,

W (r⃗) = I0e
−2(x2+y2)/ω2

0e−2z2/z20 , (5.12)

then the autocorrelation can be analytically calculated.

δF (t) = α

∫︂
V

W (r⃗)δρ(r⃗, t)dV (5.13)

Thus,
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5.2 Fluorescence Lifetime 5 Fluorescence spectroscopy

G(τ) =

s
V V ′ W (r⃗)W

(︁
r⃗′
)︁ ⟨︁
δρ(r⃗, 0)δρ

(︁
r⃗′, τ

)︁)︁⟩︁
dV dV ′(︁∫︁

V
δρ(r⃗, 0)W (r⃗)dV

)︁2 , (5.14)

with ⟨︁
δρ(r⃗, 0)δρ

(︁
r⃗′, τ

)︁)︁⟩︁
= ⟨ρ⟩ 1

(4πDτ)3/2
e(r⃗−r⃗′)

2
/4Dτ . (5.15)

Plugging Eq. 5.15 into Eq. 5.14 gives the final result:

G(τ) =
1

⟨N⟩

(︃
1 +

4Dτ

ω2
0

)︃−1(︃
1 +

4Dτ

ω2
z

)︃−1/2

. (5.16)

Here, ⟨N⟩ = ⟨C⟩Veff is the average number of particles in the so-called effective focal volume.
Note that different definitions of Veff are used. Here, we take Veff = ωzω

2
0π

3/2.
If we assume that the volume is strongly elongated along the z direction, i.e., ωz ≫ ω0, then

for a τ value of τD = ω2
0/(4D), we find that

G(τD) =
1

2⟨N⟩
=

1

2
G(0). (5.17)

Thus, τD corresponds to the time shift for which the autocorrelation has dropped to half the
”starting value”. This value is called the diffusion time and is related to how long the particles
stay on average in the focal volume.

From τD or, equivalently, D, one can calculate the size of the particle with the Stokes-Einstein
equation:

D =
kBT

6πηr
, (5.18)

with kB the Boltzmann constant, T the temperature, η the dynamic viscosity, and r the
radius.

Note that, although in theory, FCS allows seeing the formation of dimers from monomers, this
is experimentally difficult. Indeed, for a doubling in volume, only a factor 21/3 (26 %) increase in
the radius and in τD, is found.

Many variations on FCS exist: cross-correlation FCS, two-color FCS, cross, spatial and spa-
tiotemporal image correlation spectroscopy, Fluorescence Fluctuation Spectroscopy, etc. Many
other analytical or empirical fit models exist: models for two-photon FCS, second harmonic
generation ”F”CS, free diffusion of two (or more) components, anomalous diffusion, directional
transport (flow), rotational diffusion, bleaching correction, detector afterpulsing, etc. can be
found in the literature.

5.2 Fluorescence Lifetime

The fluorescence lifetime is a measure of how long a fluorophore remains in an excited state
before returning to its ground state by emitting a photon. The fluorescence lifetime can provide
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information about the environment surrounding the fluorophore, such as temperature, pH, po-
larity or viscosity. In addition, in combination with fluorescence resonance energy transfer, the
fluorescence lifetime can give information on the distance between two molecules, which can be
used for example to distinguish between the status (open/closed) of ion channels.

Fluorescence lifetime measurements can also be used to distinguish between different fluo-
rophores that emit light at the same wavelength but have different fluorescence lifetimes.

Several methods exist for measuring fluorescence lifetimes but, especially in the combination
with microscopy, time-correlated single-photon counting (TCSPC) is one of the most popular.

In TCSPC, a pulsed laser is used and the time between a laser pulse and the arrival of a
photon is measured. The histogram of the arrival times is then analyzed to get the lifetime, e.g.
by curve fitting or phasor analysis.

5.2.1 Curve fitting

Curve fitting is a widely used method for fluorescence lifetime analysis. Note that the measured
fluorescence signal is a convolution of the intrinsic fluorescence decay F (t) with the instrument
impulse response function (IRF) h(t), which deviates from an ideal Dirac-delta function due to
instrument electronics and other delay components:

d(t) = F (t) ∗ h(t). (5.19)

The IRF can be measured with a sample that has (close to) no lifetime, such as SHG or
quenched fluorescence. The IRF can then be used to deconvolve d(t) and obtain F (t).

Advantages of curve fitting for fluorescence lifetime analysis include:

• Accurate determination of fluorescence lifetime: curve fitting allows for accurate determina-
tion of fluorescence lifetime by fitting a mathematical model to the measured fluorescence
decay curve (if the SNR is high).

• Detection of multiple fluorescence lifetimes, which can be indicative of multiple fluorophores
or different conformational states of the same fluorophore.

• Easy to implement

Disadvantages are:

• Sensitivity to noise: curve fitting is sensitive to noise; small fluctuations in the data can
result in significant errors in the fitted parameters.

• Model dependence: curve fitting relies on a mathematical model to describe the fluorescence
decay curve, and the accuracy of the fitted parameters depends on the validity of the model.

• Limited information: Curve fitting only provides information about the fluorescence life-
time and other parameters that are explicitly included in the model. It does not provide
information about the underlying molecular mechanisms or interactions.

• Computationally intensive, especially when fitting complex models or large datasets, which
can be a limitation when working with limited computational resources
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5.2.2 The phasor analysis

Exponential decays are conveniently analyzed in Fourier space. We consider the case of a single
exponential

d(t) = d0 exp (−t/τ) (5.20)

with fluorescence lifetime τ . The Fourier transform of the normalized signal is

F{d(t)} (ω)∫︁ +∞
0

d(t) dt
=

1

1 + iωτ
=

1

1 + (ωτ)2⏞ ⏟⏟ ⏞
g(ω)

−i ωτ

1 + (ωτ)2⏞ ⏟⏟ ⏞
s(ω)

(5.21)

where we defined g(ω) and s(ω) respectively as the real and imaginary part of the Fourier
transform of the decay. Notably, these quantities are related by the following equation

[g(ω)− 1/2]2 + s2(ω) = 1/4 (5.22)

The vector (g, s) is known as phasor and lies on the semicircle of the complex plane described
by the above equation, commonly named the universal circle. This fact implies that the phasors
of single exponential decays are bound to lie on the universal circle. Multi-exponential decays
are linear combination of single exponential decays and their corresponding phasors lie within the
universal circle.

From equation 5.21 it is possible to calculate the lifetime the estimate in two ways. By
defining

tan [ϕ(ω)] =
s(ω)

g(ω)
(5.23)

m2(ω) = s2(ω) + g2(ω) (5.24)

we have that

τϕ =
1

ω
tan [ϕ(ω)] (5.25)

τm =
1

ω

√︄
1

m2(ω)
− 1 (5.26)

Note that – for single exponential decays – the two estimates of the lifetimes are identical and
do not depend on the frequency ω.

Sampled data are inherently discrete. Thus, we need to generalize our analysis writing the
phasor coordinates as the real and imaginary part of the discrete Fourier transform (DFT) of the
sampled signal
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g(h) =
1

I

np−1∑︂
p=0

d(p) cos(2πhp/np), (5.27)

s(h) =
1

I

np−1∑︂
p=0

d(p) sin(2πhp/np), (5.28)

where I =
∑︁

p F (p) and np is the number of data points. Identifying ω = 2πhfexc, we have the
following numerical estimates of the fluorescence lifetime

τϕ =
1

2πhfexc
tan [ϕ(h)] (5.29)

τm =
1

2πhfexc

√︄
1

m2(h)
− 1. (5.30)

Importantly, phasors can be calculated at any discrete frequency h. However, low frequencies
carry most of the signal. As such, a typical choice is h = 1, commonly referred to as the first
harmonic.

Advantages of the phasor analysis include:

• Simple graphical representation and interpretation. Note that the phasor of a sum of two
components is on a line connecting the phasors of the two individual components.

• phasor analysis is a model-independent method, meaning that it does not rely on a specific
mathematical model to describe the fluorescence decay curve.

• High-throughput: phasor analysis can be performed rapidly and can be easily implemented
in automated data analysis pipelines, making it suitable for high-throughput data analysis.

Disadvantage are:

• Poor accuracy for low SNR data.

• Susceptible to error from instrument response
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6
Image Analysis

6.1 Fourier Ring Correlation

The Fourier Ring Correlation (FRC) analysis calculates the Discrete Fourier Transform (DFT)
of two images i1 and i2, identical but acquired in two separate moments. Thus, under the
hypothesis of uncorrelated noise, only the signal contents of the two images correlate. Therefore,
a correlation function in frequency space drops to zero above a certain spatial frequency. The
inverse of this latter is the resolution of the imaging setup at the experimental conditions used
to acquired the images.

In order to reduce the inherent spectral leakage, we apply to the images a 2D Hann window
defined as follows

W (nx, ny) =
1

4

[︃
1− cos

(︃
2πnx

Nx − 1

)︃]︃[︃
1− cos

(︃
2πny

Ny − 1

)︃]︃
(6.1)

where nx,y and Nx,y are, respectively, the pixel index and the pixel size of the image. The FRC is
defined as the normalized cross-correlation function between I1 = DFT(i1) and I2 = DFT(i2).
It is calculated as

FRC (q) =

∑︁
kx,ky∈q

I1 (kx, ky) I
∗
2 (kx, ky)√︃ ∑︁

kx,ky∈q
|I1 (kx, ky)|2

∑︁
kx,ky∈q

|I2 (kx, ky)|2
(6.2)

where kx and ky are, respectively, the horizontal and vertical spatial frequencies, and q =√︁
k2x + k2y is the radial spatial frequency. The resulting curves are denoised using a Locally

Weighted Scatterplot Smoothing (LOWESS) algorithm. Importantly, if the SNR of the images
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6 Image Analysis 6.2 Image deconvolution

is low, correlations from the camera detector may appear at high frequencies. Therefore, we
subtract from the FRC curves an offset calculated as the mean of FRC samples at frequencies
above Abbe’s resolution limit.

In order to measure the effective resolution of the microscope, we calculate the following
variable-threshold function

T (q) =
σ√︁
Nq/2

(6.3)

where Nq is the number of pixels contained in the ring of radius q. In this work, we used
the so-called 3-σ threshold criterion by setting σ = 3. The intersection between the threshold
and FRC curves identifies the spatial frequency qt. Below this latter, correlations between the
two images emerge from the random noise correlations. Thus, we can interpret qt as the highest
spatial periodicity with enough contrast to be distinguishable from noise fluctuations. The optical
resolution of the images is 1/qt.

6.2 Image deconvolution

The Bayes theorem states

P (o | i) = P (i | o)P (o)
P (i)

(6.4)

where

• P (o) is the prior probability, i.e. the probability of the hypothesis i before the data o are
observed.

• P (i) is the marginal likelihood, i.e. the probability model for the data i.

• P (i | o) is the likelihood, i.e. the conditional probability of measuring i, having fixed an
hypothesis o.

• P (o | i) is the posterior probability, i.e. the conditional probability of the probability o,
having measured i.

It is possible to estimate ô as the mode of the posterior probability by maximizing it. If there
is no knowledge on the prior distribution, it is possible to assume it as uniform. In that case,
maximizing the posterior is the same as maximizing the likelihood

ô = argmax
o
P (i | o) (6.5)

In imaging problems, i is the image and o is the object. Those quantities are related by the
law

i = o ∗ h+ ϵ (6.6)

where h is the point spread function of the imaging device and ϵ is the noise.

43



6.2 Image deconvolution 6 Image Analysis

6.2.1 Wiener Filter

Under the assumption of Gaussian noise, the likelihood – seen as a function of the object o – is

P (i | o) =
∏︂
x

1√
2πσ

e−
|i−(o∗h)|2

2σ2 (6.7)

finding its maximum is equivalent to finding the minimum of the log-likelihood, which is defined
as

L(o) = − ln [P (i | o)] =
∫︂

ln
(︂√

2πσ
)︂
dx+

1

2σ2

∫︂
|i− (o ∗ h)|2 dx (6.8)

This problem is equivalent to minimizing the following loss function

ℓ(o) =

∫︂
|i− o ∗ h|2 dx⏞ ⏟⏟ ⏞

ℓ1

+λ

∫︂
|o|2 dx⏞ ⏟⏟ ⏞
ℓ2

(6.9)

where we added a regularization term.
Since we want to minimize ℓ(o), we need to impose its functional derivative to be equal to

zero. This latter, is defined from the following relation:

lim
ρ→0

ℓ(o+ ρs)− ℓ(o)

ρ
=

⟨︃
∂ℓ

∂o
, s

⟩︃
(6.10)

where ρ is a constant, s is an arbitrary function, and ⟨·, ·⟩ is the L2 inner product.
We start calculating the derivative of ℓ1(o). We have that

ℓ1(o+ ρs) =

∫︂
|i− o ∗ h− ρs ∗ h|2 dx ∼

∼
∫︂

|i− o ∗ h|2 dx+ 2ρ

∫︂
(s ∗ h)(o ∗ h− i) dx (6.11)

Therefore, the difference quotient is

lim
ρ→0

ℓ1(o+ ρs)− ℓ1(o)

ρ
= 2

∫︂
(s ∗ h)(o ∗ h− i) dx =

= 2⟨o ∗ h, s ∗ h⟩ − 2⟨i, s ∗ h⟩ = 2⟨h∗ ∗ (o ∗ h), s⟩ − 2⟨h∗ ∗ i, s⟩ =

= ⟨2h∗ ∗ [(o ∗ h)− i], s⟩ =
⟨︃
∂ℓ1
∂o

, s

⟩︃
(6.12)

where h∗ is the adjoint function of h, defined as h∗(x) = h(−x). By comparison, we find that
the derivative of ℓ1 is

∂ℓ1
∂o

= 2h∗ ∗ [(o ∗ h)− i] (6.13)
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Repeating the same calculations for the regularization term, we find

ℓ2(o+ ρs) =

∫︂
|o+ ρs|2 dx ∼

∫︂
|o|2 dx+ 2

∫︂
os dx (6.14)

lim
ρ→0

ℓ2(o+ ρs)− ℓ2(o)

ρ
= 2

∫︂
os dx =

⟨︃
∂ℓ2
∂o

, s

⟩︃
(6.15)

Therefore, the derivative of ℓ2 is

∂ℓ2
∂o

= 2o (6.16)

In order to find the minimum, we now want to impose the complete derivative to be equal to
zero

∂ℓ

∂o
=
∂ℓ1
∂o

+ λ
∂ℓ2
∂o

= 0 (6.17)

Therefore

h∗ ∗ [(o ∗ h)− i] + λo = 0 (6.18)

Calculating the Fourier Transform of the above equation, we have

H∗OH + λO = H∗I (6.19)

where the capital letters represent the Fourier transformed functions and H∗ is the complex
transpose of H. In Fourier space this equation has a simple solution, which in real space is

ô = F−1

{︃
H∗I

|H|2 + λ

}︃
(6.20)

6.2.2 Richardson-Lucy

Under the assumption of Poissonian noise, the likelihood is

P (i | o) =
∏︂
x

(h ∗ o)ie−(h∗o)

i!
(6.21)

The corresponding log-likelihood is

L(o) = − ln [P (i | o)] =
∫︂

[(h ∗ o)− i · ln(h ∗ o) + ln(i!)] dx (6.22)

and the functional to be minimized is

ℓ(o) =

∫︂
[h ∗ o− i · ln(h ∗ o)] dx+ λ

∫︂
|o|2 dx (6.23)

45



6.2 Image deconvolution 6 Image Analysis

where we added a regularization term.
In order to find the derivative, we calculate

ℓ1(o+ ρs) =

∫︂ (︃
h ∗ o+ ρs ∗ h− i · ln

[︃
(h ∗ o)

(︃
1 +

ρs ∗ h
o ∗ h

)︃]︃)︃
dx ∼ (6.24)

∼
∫︂ [︃

h ∗ o− i · ln(h ∗ o) + (ρs ∗ h)
(︃
1− i

o ∗ h

)︃]︃
dx (6.25)

Therefore,

lim
ρ→0

ℓ1(o+ ρs)− ℓ2(o)

ρ
=

∫︂
(s ∗ h)

(︃
1− i

o ∗ h

)︃
dx = ⟨s ∗ h, 1⟩ −

⟨︃
s ∗ h, i

o ∗ h

⟩︃
= (6.26)

= ⟨s, h∗ ∗ 1⟩ −
⟨︃
s, h∗ ∗ i

o ∗ h

⟩︃
=

⟨︃
h∗ ∗

(︃
1− i

o ∗ h

)︃
, s

⟩︃
= (6.27)

=

⟨︃
∂ℓ1
∂o

, s

⟩︃
(6.28)

So, the derivative is
∂ℓ1
∂o

= h∗ ∗
(︃
1− i

o ∗ h

)︃
(6.29)

Therefore,
∂ℓ

∂o
= h∗ ∗

(︃
1− i

o ∗ h

)︃
+ 2λo = 0 (6.30)

If h is normalized, we have that h∗ ∗ 1 =
∫︁
h dx = 1. Therefore, the above equation is satisfied

when [︃
h∗ ∗

(︃
i

o ∗ h

)︃]︃
1

1 + 2λo
= 1 (6.31)

This equation implies an iterative algorithm. Assuming that at convergence ok+1

ok
→ 1, we can

build the following multiplicative gradient-descent iteration rule:

ok+1 =

[︃
h∗ ∗

(︃
i

ok ∗ h

)︃]︃
ok

1 + 2λok
(6.32)
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